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Abstract. The one-parameter deformation family of the standard Kepler problem known as the
MIC–Kepler problem is completely quantized using the explicit momentum mapping of the torus
actions on some toric manifolds and some equivariant cohomology theory. These manifolds appear
as symplectic faces of the system during reduction process.

1. Introduction

Phase spaces of classical Hamiltonian systems are cotangent bundles of smooth configuration
manifolds and their quantization does not present serious problems (see section 2). However,
the first step—the prequantization—produces only part of the quantum numbers and one should
use other devices in order to obtain the spectrum of a complete set of Dirac observables. Here we
present a detailed treatment of a concrete dynamical system and show that reduction in stages
(either at a classical or quantum level) produces the desired information about the spectrum.
The system in question is the one-parameter deformation family of the Kepler problem known
as the MIC–Kepler problem (see section 4). Despite that geometric quantization concept is
thirty years old such treatment is absent even for the standard Kepler problem. A possible
explanation of this situation can be traced back to the general fact that one can quantize
unambiguously only functions which are polynomials up to a second degree in phase space
coordinates while the square of the angular momentum which is a fourth-degree polynomial
does not belong to this set. On the other hand, the choice of the momentum as an element of
the complete set of observables is dictated by the spherical symmetry of the problem. It is well
known that symmetries manifest themselves by separating the variables in the Schrödinger
equation in appropriate coordinate systems and this is related to the existence of constants of
motion. Simultaneous diagonalization of the Hamiltonian and the third components of the
momentum and Runge–Lenz vector corresponds to a separation of variables in parabolic
coordinates as noticed by Bargmann. Working in a much more abstract setting we will
follow essentially the same idea in order to derive the missing quantum numbers. From a
mathematical point of view the results which will be presented below follow from quantization
of the momentum map associated with free torus actions on symplectic (toric) manifolds.

§ Research partially supported by Bulgarian NSF-Project F-644/96.
‖ Research partially supported by DFG Project number 403 113/96/5.
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2. Geometric quantization

2.1. Kostant–Souriau programme

On any symplectic manifold(M,ω) the symplectic formω generates a Lie algebra structure
in the spaceR∞(M) of smooth real-valued functions onM. The problem of describing
the representations ofR∞(M) was approached for the first time by Dirac [1] in the case
(M ≡ R2n, ω ≡ dp ∧ dq). It has been generalized by Segal [2] for phase spaces which are
cotangent bundles. Finally, Kostant [3] and Souriau [4] treated arbitrary symplectic manifolds.
They observed that if we are able to associate to every classical variable a quantum one, then
the commutator of two quantum variables should represent up to a multiplicative number
the Poisson bracket of the classical ones. This part of the programme nowadays is called
prequantization. Below we summarize the relevant notions and definitions.

Definition 2.1. The symplectic manifold(M,ω) is pre-quantizable if[ω/2π ] is in the image
of the map

H 2
Cech(M,Z)→ H 2

deRham(M,R) (2.1)

where[ ] denotes the de Rham cohomological class.

WhenM is a compact manifold this condition is equivalent to

1

2π

∫
σ

ω ∈ Z for every two-cycle σ ∈ H2(M,Z). (2.2)

It produces the quantization of charge, spin and energy levels of some physical systems.
If (M,ω) is pre-quantizable, then there exists a line bundle with a Hermitian formh(·, ·)

L → M, whose Chern class is12π [ω], equipped with a Hermitian connection∇ whose
curvature form is−iω [3, 5–7]. The irreducibility of the representation which is the second
stage (quantization) of the programme is achieved by also introducing a new structure called
polarization. A real polarization onM is a map assigning to each pointm ∈ M, a real subspace
Fm ⊂ Tm(M) which is maximally isotropic and integrable.

Example 2.2.LetQ be a smooth manifold and letT ∗Q be its cotangent bundle. If{pi, qi}
are local canonical coordinates inT ∗Q, then an easy check shows that the vector fields

X1 = ∂

∂p1
, X2 = ∂

∂p2
, . . . , Xn = ∂

∂pn

define a real polarization overT ∗Q which is known as vertical polarization.

Example 2.3.The two-dimensional sphere(S2, ω) does not allow real polarization for any
symplectic formω, because of the non-existence of non-singular real vector field onS2.

The last example suggests the generalization of the above notion, namely: a complex
polarization overM is a mapF assigning to each pointm ∈ M a subspaceFm of T Cm (M)which
defines a maximally isotropic integrable distribution such that the the spaceDm = Fm ∩ F̄m
is of some fixed dimensionκ (independent of the pointm ∈ M). The polarizationF is called
Kählerian ifFm∩F̄m = 0.For any kind of polarizationF the potentialθ of the symplectic form
ω (i.e.ω = dθ) is adapted to it ifθ(X) = 0 for everyX ∈ F . The quantum pre-Hilbert space
is the linear space of the polarized sections ofLwhose definition is as follows: letM,ω,L,∇
andF be as above. The space of smooth polarized sections ofL is by definition

LF = {s ∈ 0(L); ∇Xs = 0, for all X ∈ X(M,F )}.
In order to define a scalar productLF we need some measure (or rather density). To introduce
it we consider the elements of the cotangent bundleT ∗(M) which vanish onF. They form a
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subbundleF ◦ ⊂ T ∗C(M)which is called the annihilator ofF.By the definition of the symplectic
form, the map

υ ∈ F → i(υ)ω ∈ F ◦
is an isomorphism betweenF andF ◦. The line bundleKF = ∧nF ◦ onM will be further
referred to as the canonical bundle ofF. If V = {υ1, υ2, . . . , υn} is a (local) basis ofF , then

KV = i(υ1)ω ∧ i(υ2)ω ∧ . . . ∧ i(υn)ω

is a basis inKF and for everyg ∈ GL(n,C), (K)gV = detg ·KV .
Let (M,ω) be a symplectic manifold and letF is a complex polarization. We shall say

thatM is a metaplectic manifold if there exists a line bundleN1/2 overM such that

N1/2⊗N1/2 = KF .
One can show that(M,ω) is metaplectic if and only if the first Chern class ofKF is zero
modulo two and this property does not depend on the choice ofF . In this case the group
H 1(M,Z2) parameterizes the set of ‘square roots’, i.e. the set of allN1/2 which satisfy the
above condition. The sections ofN1/2

F which are constant alongF are called half-forms normal
toF. The line bundleQ̃ = LF ⊗N1/2

F overM is called a quantum line bundle corresponding
to the above data. We can introduce a scalar product in the space0(Q̃)

〈s1, s2〉 =
∫
M

s1s̄2 (2.3)

and it is easy to see that the integrand is a density. Our Hilbert spaceHF is obtained by
completing0(Q) with respect to the norm. The classical observables which can be quantized
directly are the ones which preserve the polarizationF , i.e. {f ∈ R∞(M); [Xf , F ] ⊂ F },
whereXf is defined by the equation i(Xf )ω = −df . If ψ = s ⊗ ν, whereψ ∈ 0(Q̃),
s ∈ 0(LF ), ν ∈ 0(N1/2

F ) are sections of the corresponding line bundles, the quantum operator
associated withf acts inHF as follows:

f̂ (ψ) = (−i∇Xf + f )s ⊗ ν − is ⊗ L(Xf )ν. (2.4)

Identifying the sections ofLF with functions onM (locally) the action off̂ in HF can be
written in the form

f̂ ψ = (−iXf − θ(Xf ) + f )ϕ ⊗ ν − iϕ ⊗ L(Xf )ν (2.5)

whereθ is a local potential form ofω.
Actually, this explicit formula has found very few applications (cf section 6) as most of

the treatments end with checking the consistency of the scheme relying on (2.4).

2.2. Czyz–Hess scheme

Most components of the above scheme have an easy classical interpretation in the case when
the symplectic manifold(M,ω) is a Kähler, i.e. when the manifoldM has a complex structure

T CM = T 1,0M ⊕ T 0,1M (2.6)

and a Hermitean metricg such that

ω = Im g. (2.7)

Using the notation of the previous section we can chooseF = T 0,1M and refer to formula
(2.6) as giving a ‘K̈ahlerian’ polarization. The determinant line bundleK of the anihilator
F 0 ∼= (T 1,0M)∗ is in algebraic geometry the well known canonical bundle. The problem
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which arises whenc1(K) is not an even cohomoligical class as in the case ofCP 2n because
of the general result

c1(CPn) = (n + 1)ω (2.8)

is solved by Czyz [8] and Hess [9] via a slight modification of geometric quantization scheme
which is outlined below.

Definition 2.4. Let (M,ω) be such K̈ahlerian manifold that[q] = 1
2π [ω] − 1

2c1(M) belongs
to the image ofε : H 2(M,Z)→ H 2(M,R) andq is positive, i.e.q(σ ) > 0 for any positively
oriented two-cycleσ ∈ H2(M,R). A complex line bundleQ with c1(Q) = q is called a
quantum bundle.

We fix a positive harmonic representativeη ∈ c1(Q) and a Hermitian connection∇ whose
curvature is−2π iη. Now we also have a∇-invariant Hermitian structurehη(, ) onQ. We
recall that, the curvature of the hermitean metrichη satisfies

i

2π
∂∂̄ loghη ' ω

2π
− 1

2
c1(M).

The space of holomorphic sectionsH 0((M,Q) of Q is a Hilbert spaceH with the scalar
product

〈s, t〉 =
∫
M

hη(s, t)�η ωη = 2πη s, t ∈ 0(M,Q) n = 1
2 dimM

where�η := (−1)n(n−1)/2

n! ωη ∧ ωη ∧ · · · ∧ ωη is the natural volume form onM. If our manifold
M is simply connected the above Hermitian structure is determined up to a positive factor
andH is determined up to an isomorphism which depends on the choice of the connection
∇. The representations are constructed following the prequantization recipe in where we put
(Q,ωη) in place of(L, ω). To the classical observablef (a function on the phase space), there
corresponds a quantum operator

δ(f ) ∈ EndH 0(M,Q) δ(f )s ≡ (−i∇Xf + f )s

wheres ∈ H 0(M,Q), and now the vector fieldXf is defined by:

i(Xf )ωη = −df.

The only problem with this postulate is thatωη is not always non-degenerate. More detailed
exposition can be found in Czyz [8] and Hess [9].

3. Classical and quantum reductions

When a Lie groupG acts symplectically (canonically) on the phase space(P, ω) of the
Hamiltonian system(P, ω,H) leaving the HamiltonianH invariant it generates quite naturally
a mapping fromP into the dual spaceg∗ of its Lie algebrag whose components are integrals
of motion for the dynamical system. The motion takes place inside a constraint submanifold
C ⊂ P and sometimes possesses gauge degrees of freedom. Passing on a new manifold where
they are discarded has been known for centuries in mechanics as reduction procedure and its
modern formulation given below is due to Marsden and Weinstein [10].

Theorem 3.1.Let (P, ω) be a symplectic manifold on which acts canonically theLie group
G, andJ : P → g∗ be theAd∗-equivariant momentum mapping of this action. Let us suppose
thatµ ∈ g∗ is a regular value ofJ and that the isotropy groupGµ act freely and properly on
J−1(µ). ThenPµ = J−1(µ)/Gµ is a symplectic manifold with a symplectic form defined by
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π∗µωµ = i∗µω whereπµ : J−1(µ) → Pµ is the canonical projection andiµ : Pµ → P is the
embedding. LetH : P → R isG-invariant Hamiltonian function. The flow induced onPµ is
also Hamiltonian with Hamiltonian functionHµ defined by the relationHµ ◦ πµ = H ◦ iµ.

If a Hamiltonian system(M,ω,H) allows another symmetry group action commuting with
that ofG, then the reduced system(Pµ, ωµ,Hµ) keeps this symmetry.

A special case of the above theorem which will be of immediate interest is the case when
P is a cotangent bundleT ∗(M) of some manifoldM on which acts freely and properly the
one-parameter Lie groupG. Let M → N = M/G be the induced principalG-bundle and
let α̃ be the connection one-form. The reduced symplectic manifoldPµ is symplectomorphic
with T ∗N whose symplectic formωµ is the sum of the canonical form onT ∗N and a magnetic
termµτ ∗N dα̃ whereτN is the canonical projectionτN : T ∗N → N [11].

Thus, each Hamiltonian system with symmetry can be treated as a dynamical system
either on(P, ω) or (Pµ, ωµ) and what is more important—there is no formal distinction at
a classical level between working on the initial or reduced phase space. There are plenty of
strong results concerning the quantum mechanical counterpart of this situation which tell us
when quantization and reduction are coherent procedures (see [12–15]). In order to give the
reader the flavour of what to expect in this situation and because we will make use of it we
quote the following result.

Theorem 3.2 (Guillemin and Sternberg [13]).Let us suppose that the (extended) phase
space(P, ω) is a compact and quantizable,G is a compactLie group,0 ∈ g∗ is a regular value
ofJ andF is a KählerianG-invariant polarization overP . Then, there exists an isomorphism
between theG-invariant sections ofLF and the sections of the quantum line bundle over the
reduced phase space(P0, ω0).

The situation is even more favourable—in the above setting the reduction and (pre)-quantization
are interchangeable procedures.

4. The MIC–Kepler problem

The Hamiltonian system(T ∗Ṙ3, �µ,Hµ) , where

T ∗Ṙ3 ≡ T ∗(R3 \ {0}) ≡ {(p, q) ∈ R3× R3; q 6= 0}

�µ = dθ + σµ θ =
3∑
j=1

pj dqj σµ = −µ/(2|q|3)
3∑

i,j,k=1

εijkqi dqj ∧ dqk

Hµ = 1
2|p|2 − α/r +µ2/2r2 |q|2 = q2

1 + q2
2 + q2

3 = r2 α,µ ∈ R α > 0

(4.1)

is known as the MIC–Kepler problem [16,17]. In standard physical terminology, the problem
consists in studying the motion of a charged particle in a field which is the superposition of
a magnetic monopole fieldEBµ = −µEq/|q|3, the fields generated by the Newtonian potential
−α/r and a centrifugal potentialµ2/2r2. We will see that the energy level submanifolds
H−1
µ (E) for negative values of the energy are filled up with closed orbits. This hints at a

presence of ‘hidden’ symmetry and ‘accidental’ degeneracy of the spectrum. Actually, the
‘hidden’ symmetry group of the Hamiltonian system(T ∗Ṙ3, �µ,Hµ) is SO(4) generated by
the constants of motion

ELµ = Eq × Ep +µEq/r EAµ = ( ELµ × Ep + αEq/r)/√−Hµ
which may be interpreted as a ‘total angular momentum’ and a generalized Runge–Lenz vector.
The names are borrowed from the standard Kepler problem which can be viewed as a special
‘point’ of this one-parameter deformation family. The classical Kepler problem(µ = 0) was
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geometrically quantized by Simms [18] and Mladenov and Tsanov [19]. Here we will apply
geometric quantization to the extended and the reduced phase spaces of the Hamiltonian system
(T ∗Ṙ3, �µ,Hµ) which results in coinciding spectra. We shall present them as follows.

Theorem 4.1 (Mladenov and Tsanov [17]).The discrete spectrum (bound states) of the
MIC–Kepler problem (α—fixed,µ—fixed and quantized) consists of energy levels :

EN = −α2/2N2 N = |µ| + 1, |µ| + 2, |µ| + 3 . . . .

The magnetic chargeµ can take the values

µ = 0,± 1
2,±1,± 3

2,±2 . . .

and the multiplicity of the energy levelEN is

m(EN) = N2 − µ2.

5. Conformal Kepler problem

The Hamiltonian system(T ∗Ṙ4, �,Hα), where

T ∗Ṙ4 = T ∗(R4 \ {0}) = {(y, x) ∈ R4× R4; x 6= 0}

� = dy ∧ dx =
4∑
j=1

dyj ∧ dxj
(5.1)

and

Hα = (|y|2 − 8α)/8|x|2 α—fixed constant

is known as the conformal Kepler problem [20]. Let us additionally introduce two other
Hamiltonian functions on the phase space(T ∗Ṙ4, �): the Harmonic oscillator,

Kλ = (|y|2 + λ2|x|2)/2 λ—an arbitrary positive constant

and the ‘momentum’,

M = 1
2(x1y2 − x2y1 + x3y4 − x4y3).

Lemma 5.1. LetE < 0 andλ = √−8E. Then

H−1
α (E) = K−1

λ (4α)

and the flows defined by the HamiltoniansHα andKλ coincide on these hypersurfaces up to
re-parameterization.

Proof. Taking into account the above definition it is obvious that we have

4|x|2(Hα + λ2/8) = Kλ − 4α

which proves the first statement. Further onHα andKλ will be denoted byH andK.
In order to prove the second one we need only to notice that the Hamiltonian vector fields

XH andXK when restricted to energy level submanifoldsH−1(E) = K−1(4α) are related as
follows:

4|x|2XH = XK
and so the proof of the lemma is complete. �
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The complex coordinates on(T ∗Ṙ4, �) written below depend on the same arbitrary
positive constantλ chosen above

z1 = λ(x1 + ix2)− i(y1 + iy2) z2 = λ(x3 + ix4)− i(y3 + iy4)

z3 = λ(x1− ix2)− i(y1− iy2) z4 = λ(x3− ix4)− i(y3− iy4).
(5.2)

In these coordinatesT ∗Ṙ4 ≡ C4 \D, where

D = {z ∈ C4, z1 = −z̄3, z2 = −z̄4}
and the symplectic form� is (up to a multiplicative constant) the standard Kähler form onC4

� = i

4λ
dz ∧ dz̄ = i

4λ

4∑
j=1

dzj ∧ dz̄j .

Finally, the Hamiltonian functionsK andM may be written in these coordinates as

K = (|z1|2 + |z2|2 + |z3|2 + |z4|2)/4 (5.3)

and

M = (|z1|2 + |z2|2 − |z3|2 − |z4|2)/8λ. (5.4)

We remark that the Hamiltonians and the symplectic form� are well defined over the manifold

Ċ4 = C4 \ {0} ⊃ T ∗Ṙ4.

LetKt,Mt denote the flows of the Hamiltonian systems(Ċ4, �,K), (Ċ4, �,M).

Lemma 5.2. For everyz ∈ Ċ4 ands, t ∈ R, the corresponding flows are:

Ktz = (eiλt z1, e
iλt z2, e

iλt z3, e
iλt z4) (5.5)

Msz = (eis/2z1, e
is/2z2, e

−is/2z3, e
−is/2z4). (5.6)

In particular, the flows of all three HamiltoniansH,K andM commute where defined.

Proof. The explicit expressions for the flowsKt,Ms are obtained by direct calculations. The
last assertion follows from these expressions and lemma 5.1.

Thus the flowMs defines a symplecticU(1)-action overĊ4. The ‘momentum’ for this
action isM itself. Let us remark that the setD and consequently its complementary set
T ∗Ṙ4 are invariant under thisU(1)-action. Through every point there passes one orbit and
the Hamiltonian functionH exactly invariant on these orbits. Hence, the Hamiltonian system
(T ∗Ṙ4, �,H) can be reduced with respect toU(1). The result of this reduction is summarized
in the following lemma. �

Lemma 5.3 ( [17,20]).Letµ ∈ R be the value of the momentum map of the lifted Hopf action
onT ∗Ṙ3. Then

M−1(µ)/U(1) ≡ T ∗Ṙ3

and when reduced� andH produce�µ andHµ, i.e. one ends with the MIC–Kepler problem.

Besides, if one reduces the constants of motion of the conformal Kepler problem :

M1 = (z1z̄2 + z2z̄1− z3z̄4 − z4z̄3)/8λ A1 = (z1z̄2 + z2z̄1 + z3z̄4 + z4z̄3)/8

M2 = (z1z̄2 − z2z̄1 + z3z̄4 − z4z̄3)/8 A2 = (z1z̄2 − z2z̄1− z3z̄4 + z4z̄3)/8
M3 = (|z1|2 − |z2|2 − |z3|2 + |z4|2)/8 A3 = (|z1|2 − |z2|2 + |z3|2 − |z4|2)/8

(5.7)

one gets the momentumELµ and the generalized Runge–Lenz vectorEAµ which are constants
of the motion for the MIC–Kepler problem.
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6. Quantization of the extended phase space

Definition 6.1. The level hypersurfaces of the mapJ : C4 \D → R2, J (z) = (K(z),M(z))
are called energy-momentum manifolds.

EM(λ,µ) = {(y, x) ∈ T ∗Ṙ4;K = 4α,M = µ}.
Under reductionEM(λ,µ) falls down (viaπµ) over the energy hypersurfaceHµ = −λ2/8
(λ = √−8E) of the MIC–Kepler problem. As a setEM(λ,µ) is not empty ifλ andµ satisfy
the condition

λ|µ| 6 2α.

In this section we assume (the reasons will be explained in the next one) that we have strong
inequalityλ|µ| < 2α. Following [21] (see also [22, 23]) we will change our viewpoint and
will consider(T ∗Ṙ4, �) as an ‘extension’ of(T ∗Ṙ3, �µ).

We now prove theorem 4.1 in the context of the extended phase space.

Proof. We work with the complex coordinates defined in (5.2), the polarizationF ‘spanned’ by
the anti-holomorphic directions{ ∂

∂z̄1
, ∂
∂z̄2
, ∂
∂z̄3
, ∂
∂z̄4
} and adapted potentialθ = − i

4λ z̄ dz of �.
The Hilbert space consists of ‘wavefunctions’ of the formψ = ϕ⊗ ν whereϕ is holomorphic
and

ν = (dz1 ∧ dz2 ∧ dz3 ∧ dz4)
1/2.

Essentially Dirac’s quantization in the presence of constraints which are not eliminated at
the classical level enforces them at the quantum level. In our case the constraintsK = 4α
andM = µ select the energy-momentum manifoldEM(λ,µ) and therefore the admissible
quantum states are those which belong to the subspaceHJ of H defined below:

HJ = {ψ ∈ H; K̂ψ = 4αψ, M̂ψ = µψ}.
Taking into account all of the above and formula (2.5) we write down the quantized version of
our operators as

K̂ψ = λ
(
z1
∂

∂z1
+ z2

∂

∂z2
+ z3

∂

∂z3
+ z4

∂

∂z4
+ 2

)
ϕ ⊗ ν

= λ(N + 2)ψ = 4αψ N = 0, 1, 2, . . .

and

M̂ψ = 1

2

(
z1
∂

∂z1
+ z2

∂

∂z2
− z3

∂

∂z3
− z4

∂

∂z4

)
ϕ ⊗ ν = µψ

whereϕ is a homogeneous monomial of degreeN in z1, z2, z3 andz4.

IntroducingN = N /2 + 1 and solving

2N
√−8E = 4α

we obtain the energy spectrumEN = −α2/2N2 as well

n1 + n2 + n3 + n4 = 2N − 2

n1 + n2 − n3− n4 = 2µ ni > 0 i = 1, 2, 3, 4.

The last constraint relation is equivalent to Dirac’s quantization of the magnetic charge:

µ = 0,± 1
2,±1,± 3

2,±2 . . . .

Besides we get:

n1 + n2 = N +µ− 1= N1 = 0, 1, 2, . . .
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and

n3 + n4 = N − µ− 1= N2 = 0, 1, 2, . . .

which combined tell us that the admissible values ofN are given by the formulaN =
|µ| + 1, |µ| + 2, |µ| + 3, . . . .

In order to find the degeneraciesm(EN) one should notice thatϕ can be represented as a
productϕ1(z1, z2).ϕ2(z3, z4) of homogeneous monomials of degreeN1 andN2 respectively.
So, the dimension of the Hilbert spaceHµ,N is:

m(EN) = dimHµ,N = (N1 + 1)(N2 + 1) = N2 − µ2

and this ends the proof of the theorem. �

Remark 6.2. The Hilbert spaceHµ,N is the carrier space for the unitary irreducible
representation(N1

2 ,
N2
2 ) = (N+µ−1

2 ,
N−µ−1

2 ) of the global symmetry group of the MIC–Kepler
problemSpin(4) ∼= SU(2)⊗ SU(2)(µ-half-integer) orSO(4) (µ-integer).

The wavefunctions inH = ⊕Hµ,N are labelled uniquely by four quantum numbers which
are the eigenvalues of the complete set of commuting operatorsM̂(µ), Ĥ (N), M̂3(m), Â3(`),

where

M̂3ψ = 1

2

(
z1
∂

∂z1
− z2

∂

∂z2
− z3

∂

∂z3
+ z4

∂

∂z4

)
ψ = mψ (6.1)

and

Â3ψ = 1

2

(
z1
∂

∂z1
− z2

∂

∂z2
+ z3

∂

∂z3
− z4

∂

∂z4

)
ψ = `ψ. (6.2)

From (6.1) and (6.2) we conclude immediately thatm and` can take either integer or half-
integer values. We also remark that this result is closely related with convexity theorems about
torus actions on symplectic manifolds [23]. Indeed, let us consider the flowsUς, Vτ generated
byM3 andA3,

Uςz = (eiς/2z1, e
−iς/2z2, e

−iς/2z3, e
iς/2z4) (6.3)

Vτz = (eiτ/2z1, e
−iτ/2z2, e

iτ/2z3, e
−iτ/2z4) (6.4)

in conjunction withKt andMs . Doing so we realize that we have at our disposal an action of
the four-torusT 4 on our symplectic manifold(Ċ4, �). Introducing new ‘time’ variables

φ1 = λt +
s

2
+
ς

2
+
τ

2
φ2 = λt +

s

2
− ς

2
− τ

2
φ3 = λt − s

2
− ς

2
+
τ

2
φ4 = λt − s

2
+
ς

2
− τ

2

(6.5)

this action takes the form

8(φ, z) = (eiφ1z1, e
iφ2z2, e

iφ3z3, e
iφ4z4) (6.6)

and the associated momentJ8 is readily given by

J8(z) = 1

8λ
(|z1|2, |z2|2, |z3|2, |z4|2) (6.7)

which makes it obvious that the image set is convex. Besides, our representation space is
spanned by the homogeneous polynomials of degreeN in the variablesz1, z2, z3, z4 on which
the torus elementg = (eiφ1, eiφ2, eiφ3, eiφ4) is represented by the transformation∑

anz
n→

∑
ane

iφ·nzn. (6.8)

The multi-indicesn = (n1, n2, n3, n4) which appear above obeyn1 + n2 + n3 + n4 = N and
provide labels for the irreducible multiplicity-free representationsρN of the torusT 4.
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7. Quantization of the orbit manifolds

In section 5 we have established that the energy level submanifolds consist entirely of closed
orbits. This allowsH−1

µ (E) to be factorized with respect to the dynamical flow and the thus
obtained manifoldH−1

µ (E)/U(1) = Oµ(E) is known as an orbit manifold. Its complete
description as a symplectic manifold is given below.

Theorem 7.1 (Mladenov and Tsanov [17]).LetE < 0 andλ = √−8E. Then

(i) if λ|µ| < 2α,Oµ(E) ∼= P 1× P 1

(ii) if λ|µ| = 2α,Oµ(E) ∼= P 1

(iii) if λ|µ| > 2α,H−1
µ (E) ≡ ∅.

The reduced symplectic form overP 1× P 1 is:

�µ(E) = 2π(2α + λµ)

λ
ω1 +

2π(2α − λµ)
λ

ω2 (7.1)

where

ωj = i

2π

dζj ∧ dζ̄j
(1 + |ζ |2)2 j = 1, 2 (7.2)

and(ζ1, ζ2) are non-homogeneous coordinates onP 1× P 1.
The symplectic form overP 1 in item (ii) is the respective non-zero component ofOµ(E)

(depending on the sign ofµ). This theorem reduces the quantization of the MIC–Kepler
problem to a geometric quantization of the compact Kähler manifoldsP 1 × P 1 andP 1. The
proof is based on the following lemma.

Lemma 7.2.Oµ(E) ∼= J−1(4α,µ)/U(1)× U(1).

Proof. Whenµ 6= 0 the orbits of the HamiltonianH coincide with that ofK described by
lemma 5.1. In particular, none of them belongs toĊ4 \ T ∗Ṙ4 = D \ {0} and therefore we
have one-to-one correspondence between the orbits of the MIC–Kepler problem on the energy
hypersurfaceHµ = E and the orbits of the torus action onJ−1(4α,µ) described in lemma 5.2
and this implies that the orbit spaces are identical.

What remains to be done in order to prove theorem 7.1 is to describe properlyJ−1(4α,µ).
Now we remark that the system of equationsK = 4α,M = µ is equivalent to the system

|z1|2 + |z2|2 = 4(2α + λµ) |z3|2 + |z4|2 = 4(2α − λµ)
so we can conclude that

J−1(4α,µ) =


S3× S3 when λ|µ| < 2α
S3 when λ|µ| = 2α

∅ when λ|µ| > 2α.

The projectionp : S3×S3→ P 1×P 1 is defined through the Hopf’s map of the corresponding
factors

p(z1, z2, z3, z4) = ([z1 : z2], [z3 : z4])

where [z1 : z2], [z3 : z4] are the homogeneous coordinates overP 1× P 1. In accordance with
lemma 7.2 the projectionp is just the factor-map

J−1(4α,µ)→ J−1(4α,µ)/(U(1)× U(1)).
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In this way item (i) of theorem 7.1 is proven. It is obvious that the restriction ofp on the
non-trivial factor gives the map we needed in order to prove (ii). Finally, item (iii) is trivial. It
remains to compute the reduced symplectic form. In the non-homogeneous coordinates

(ζ1, ζ2) = (z2/z1, z4/z3)

onP 1× P 1, we have

p(z1, z2, z3, z4) = (ζ1, ζ2).

Referring to lemma 7.2 we can write

p∗�µ(E) = �|S3×S3

whereS3×S3 are spheres defined above. This is checked by an easy computation in coordinates
and completes the proof of theorem 7.1. �

Let us denote byω1, respectivelyω2, the pullbacks of the Fubini–Study forms of the first
and second factors of the productP 1 × P 1. Obviously the cohomology classes [ω1], [ω2]
generate the groupH 2(P 1× P 1) = Z⊕ Z and

c1(N
1/2
F ) = − 1

2c1(P
1× P 1) = −([ω1] + [ω2]).

In view of the prequantization condition (2.2) we have

1

2π
�µ(E) = N1ω1 +N2ω2 N1, N2 ∈ Z

which means that

2α + λµ = λN1

2α − λµ = λN2

as well as

µ = 1
2(N1−N2) λ = 4α(N1 +N2).

IntroducingN = 1
2(N1 + N2), we get immediatelyN1 = N + µ, N1 = N − µ as well

as the energy spectrum of the MIC–Kepler problemEN = −α2/2N2. The Hilbert space
H 0(P 1× P 1,QN) is non-trivial if the first Chern class of the line bundleQN → P 1× P 1

c1(QN) = (N1− 1)[ω1] + (N2 − 1)[ω2]

is positive, i.e.N1, N2 > 1 andN > |µ| + 1. Finally, the degeneraciesm(EN) of the energy
levelsEN which coincide with dimensionalities of the spaces of holomorphic sections of
quantum line bundlesQN are calculated by the Riemann–Roch–Hirzebruch theorem:

m(EN) = dimH 0(Oµ(E),QN) = N1N2 = N2 − µ2.

Remark 7.3. The observablesM3 andA3 in the complete set which survive under reduction
can be expressed in the nonhomogeneous coordinates(ζ1, ζ2) overOµ(EN) as follows:

M
µ,N

3 = N1

2

1− |ζ1|2
1 + |ζ1|2 −

N2

2

1− |ζ2|2
1 + |ζ2|2

A
µ,N

3 = N1

2

1− |ζ1|2
1 + |ζ1|2 +

N2

2

1− |ζ2|2
1 + |ζ2|2 .
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The expression for the third component of the Runge–Lenz vector is actually the momentum
mapping of the circular action around vertical axes of the spheres. If we fix its value to be`

then the momentum manifold

N1
|ζ1|2

1 + |ζ1|2 +N2
|ζ2|2

1 + |ζ2|2 =
N1

2
+
N2

2
− ` = N − ` (7.3)

is either the sphereS3 whenN − ` > 0, four points whenN − ` = 0 or the empty set in the
caseN − ` < 0. This can be seen quite easily if we introduce the following set of coordinates:

ξ1 =
(

N1

1 + |ζ1|2
)1/2

ζ1 ξ2 =
(

N2

1 + |ζ2|2
)1/2

ζ2 (7.4)

in which (7.3) becomes obviously

|ξ1|2 + |ξ2|2 = N − `. (7.5)

In the first of the above listed cases we have a free action ofSO(2) on J−1(`) and therefore
we can factorize it. The reduced manifold is topologically the sphereS2 and the reduced
symplectic form is

ω` = 2π(N − `)σ (7.6)

whereσ is the form (7.2) written in any of the non-homogeneous coordinates on the projective
line [ξ1 : ξ2]. Now the quantization condition reads

(N − `)σ − σ = kσ k > 0 (7.7)

from which follows that the maximal value of` isN − 1. Using the Riemann–Roch theorem
one can easily find that the number of the global holomorphic sections of the reduced quantum
bundleLk over the sphereS2 is k + 1= N − `. Introducingξ := ξ1/ξ2 the last functionMµ,N

3
from the complete set of observables can be written as

(N − `)1− |ξ |
2

1 + |ξ |2 +µ (7.8)

while the corresponding ‘quantum’ operator is

−2ξ
∂

∂ξ
+N − `− 1 +µ. (7.9)

The spectrum of this operator in0(S2,O(Lk)) is the finite set{−k + µ,−k + µ + 2, . . . , k +
µ−2, k +µ}. At the classical level (7.8) is just the momentum map of the circle action around
the third axis of the sphereS2 (so we can forget the additive constantµ) and if |m| < N − `
this action is free. The inverse image of the momentum map is a circle and after reduction we
end with a point as reduced phase space. The representation space associated with this point is
one-dimensional as the onlySO(2)-invariant section which descends fromS2 is the constant
section.

Remark 7.4. Since the first days of quantum mechanics the volume in the phase space was
expected to be related to the number of pure states. This was proven to be assymptocally true
(up to universal factor) by Heckman on the basis of the Duistermaat–Heckman exact stationary
phase formula [24]. This formula involves the set of fixed points of the action which we have
not considered yet. TheS1 action onS2 was treated in [25] and the result (in our notation) is

vol(S2
m) =

{
1 if |m| < N − ` a point

0 if |m| > N − ` empty.
(7.10)
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TheS1 diagonal action onS2× S2 which has four fixed points mentioned above is studied by
Wu [26] and in that case

vol((S2 × S2)`) =
{

2π(N − `) if N − ` > 0

0 if N − ` 6 0.
(7.11)

Finally the volume of the orbit manifoldOµ(N) is 4π2N1N2 and all this coincides with the
results we have obtained before.

Remark 7.5. Thus in our case there is complete coherence of results obtained at all levels,
starting with the extended and ending with a point, i.e. the reduction–quantization technique is
the straightforward formalism for the treatment of systems with high symmetries. The quantum
numbers can be derived by quantizing any of the symplectic manifolds which appear at different
stages of the reduction procedure.
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